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Divisibility properties in ultrapowers
of commutative rings

David F. Anderson, Ayman Badawi, David E. Dobbs and Jay Shapiro

Abstract. All rings considered are commutative with identity. We study the preservation of certain
properties in the passage from a ring R to the ultrapower R� relative to a free ultrafilter on the set
of all positive integers. Our main result is that if R is a locally pseudo-valuation domain (LPVD) of
finite character (for instance, a semi-quasilocal LPVD), then R� is also an LPVD. In the same vein,
it is shown that the classes of pseudo-valuation domains and pseudo-valuation rings are each stable
under the passage from R to R�. An example is given of a divided domain R such that the domain
R� is not divided. A divisibility condition is found which characterizes the divided (respectively,
quasilocal) rings R such that R� is a divided (respectively, treed) ring.
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1 Introduction

All rings considered in this note are commutative with identity. Our interest here is in
the preservation of certain properties in the passage from a ringR to the ultrapowerR�

relative to a free ultrafilter U on a denumerable index set I . For convenience, we iden-
tify I with the set N of all positive integers. (The interested reader is invited to check
that our methods extend to the case in which U is any countably incomplete ultrafilter
on an infinite index set I ; and that many of our results carry over to ultraproducts.)
By definition, R� is the factor ring of

Q
I R modulo the ideal ¹.ai /i2I j Z.ai / 2 Uº,

where Z.ai / denotes the set of coordinates i where ai D 0. By an abuse of notation,
we will also denote the elements of R� by .ai /i2I . It will be clear from the context
whether we are working in the product or the ultrapower.

For some time, there has been considerable interest in the transfer of ring-theoretic
properties betweenR andR�; see, for instance, [19], [20], [21], as well as [16, pp. 179–Note 1

replaced
colon by
semicolon

180] for a brief introduction to ultrafilters and ultraproducts. Among the assembled lore
is the fact that if R is an integral domain with quotient field K, then R� is an integral
domain with quotient field K�. More significantly, if a ring R is semi-quasilocal with
exactly n maximal ideals, then R� is also semi-quasilocal with exactly n maximal
ideals [20]. In particular, if .R;M/ is a quasilocal ring, then R� is also quasilocal,
with unique maximal ideal M �. Much of our motivation comes from the result [15]
that ifR is a Prüfer domain, thenR� is also a Prüfer domain. Hence, ifR is a valuation
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domain, then so is R�. In the same spirit, our main result, Corollary 3.3, establishes
that if R is a locally pseudo-valuation domain (LPVD, in the sense of [12]) of finite
character (for instance, a semi-quasilocal LPVD), then R� is also an LPVD. Section 3
is devoted to a proof of Corollary 3.3, together with the supporting technical results on
ultrafilters. Section 2 deals with easier material, primarily for certain quasilocal rings,
suggested by the Prüfer$ LPVD interplay.

The “interplay” that was just mentioned refers to the fact that LPVDs are, perhaps,
the best behaved members in the class of locally divided integral domains (in the sense
of [10]). This class is particularly interesting for several reasons: it contains all Prüfer
domains as well as many integral domains that are not necessarily integrally closed;
and the “locally divided integral domain” concept figures in several characterizations
of Prüfer domains. Generalizations to the context of rings possibly with nontrivial
zero-divisors have led to concepts such as divided rings [3], locally divided rings [7],
and pseudo-valuation rings ([14], [6]). Among the results in Section 2, we establish
in Corollary 2.8 and Proposition 2.9 that the classes of pseudo-valuation domains and
pseudo-valuation rings are each stable under the passage from R to R�. However,
Example 2.4 shows that the class of divided domains does not exhibit similar stability.
Section 2 also contains sharper facts, such as Example 2.5, involving the concept of
a treed ring. (Recall that a ring R is called treed in case no maximal ideal of R can
contain incomparable prime ideals of R; thus, a ring R is quasilocal and treed if and
only if Spec.R/, the set of all prime ideals of R, is linearly ordered with respect to
inclusion.) The study of the various classes of divided rings in Section 2 is aided by
a divisibility condition established in Proposition 2.3 as a characterization of rings R
such that R� is divided. This result is paired naturally with our first result, Proposition
2.1 which, in the context of ultrapowers, permits a permutation in the quantifications
in a characterization of rings R such that Spec.R/ is linearly ordered [2, Theorem 0].

Our reasoning with ultrapowers often depends on a number of facts that are used
without further mention. For instance, consider elements x D .xi /; y D .yi / of the
ultrapower R�. Then xk D 0 (for some k 2 N/ if and only if ¹i 2 I j xki D 0º 2 U.
Similarly, xjy if and only if ¹i 2 I j xi jyiº 2 U. Also, note that if P is an ideal
of a ring R, then P � WD ¹.ai / j ¹i 2 I j ai 2 P º 2 Uº is an ideal of R�; and
P � 2 Spec.R�/ if and only if P 2 Spec.R/. Viewing R as canonically embedded
in R� via the diagonal map, we see easily that P � \ R D P . Furthermore, there are
canonical isomorphisms .R=P /� Š R�=P � and (if P is a prime ideal) .RP /� Š R�P� .

In addition to the notation and conventions mentioned above, we use dim(ension) to
refer to Krull dimension; and, for a ringR, we use Max.R/ to denote the set of maximal
ideals of R, Min.R/ to denote the set of minimal ideals of R, Nil.R/ to denote the set
of nilpotent elements of R, and Rad.J / to denote the nilradical of an ideal J of R.
Any unexplained material is standard, as in [13].

2 Comparability properties in Spec.R�/

Recall from [2, Theorem 0] that for any ring R, Spec.R/ is linearly ordered (with Note 2
title:
lowercase

respect to inclusion) if and only if, for any a; b 2 R, there exists n D n.a; b/ 2 N
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such that either ajbn or bjan. This criterion is sharpened in the following result for
ultrapowers. One consequence of Proposition 2.1 is the fact that if R is a ring such that
Spec.R�/ is linearly ordered, then Spec.R/ is also linearly ordered; a more elementary
proof of this fact follows since P � \R D P for each P 2 Spec.R/.

Proposition 2.1. LetR be a ring. Then Spec.R�/ is linearly ordered if and only if there
exists n 2 N such that for all a; b 2 R, either ajbn or bjan.

Proof. We first prove the contrapositive of the “only if” assertion. Suppose, then, that
there does not exist n 2 N such that for all a; b 2 R, one has that either ajbn or bjan.
Thus, for each n 2 N, there exist elements an; bn 2 R such that an−bnn and bn−ann.
Define ˛; ˇ 2 R� by ˛ WD .an/n2N and ˇ WD .bn/n2N . We claim that for all n 2 N,
˛−ˇn and ˇ−˛n. Given the claim, one sees via the criterion in [2, Theorem 0] that, as
desired, Spec.R�/ is not linearly ordered.

Suppose that the above claim fails. Then, without loss of generality, ˛jˇk for some
k 2 N. It follows, by a fact recalled in the Introduction, that ¹n 2 N j anjbknº 2 U.
However, for all n � k, we know that an−bkn . Hence, ¹n 2 N j anjbknº � ¹1; 2; : : : ; k�
1º. This is a contradiction, since a finite set cannot be a member of a free ultrafilter.
This establishes the claim and completes the proof of the “only if” assertion.

We next turn to the “if” assertion. Suppose, then, that there exists k 2 N such that
for a; b 2 R, either ajbk or bjak . By applying the above criterion from [2, Theorem
0], our task is translated to showing that if ˛ WD .an/n2N and ˇ WD .bn/n2N , then
there exists n 2 N such that either ˛jˇn or ˇj˛n. It suffices to show that either ˛jˇk

or ˇj˛k . Putting V WD ¹i 2 N j ai jbki º and W WD ¹i 2 N j bi jaki º, we see from a
fact recalled in the Introduction that an equivalent task is to show that either V 2 U or
W 2 U. Since U is an ultrafilter, it is enough to show that V [W D N. This equality
is, however, ensured by the hypothesis of the “if” assertion, to complete the proof.

Recall that a local (Noetherian) integral domain .R;M/ is called analytically un-
ramified (resp., analytically irreducible) if its completion with respect to the filtration
given by the powers M n is a reduced ring (resp., an integral domain). Our next re-
sult, which re-encounters the criterion from Proposition 2.1, is also interesting in that
neither its hypothesis nor its conclusion mentions an ultrapower.

Corollary 2.2. Let R be an analytically unramified one-dimensional local integral do-
main. Then R is analytically irreducible if and only if there exists n 2 N such for all
a; b 2 R, either ajbn or bjan.

Proof. The integral closure of R (in its quotient field) is a finitely generated R-module
[22]. It therefore follows from well-known results (cf. [18, (43.20), (32.2)], [8, Propo-Note 3
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sition III.5.2]) that R is analytically irreducible if and only if the integral closure of
R is local. By [21, Theorem 6.3], the latter condition is equivalent to requiring that
Spec.R�/ is linearly ordered. Accordingly, an application of Proposition 2.1 completes
the proof.

A ring R is called divided if, for each P 2 Spec.R/ and a 2 R, either a 2 P or
P � Ra. Recall from [3, Proposition 2] that a ring R is divided if and only if, for
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any elements a; b 2 R, either ajb or there exists n D n.a; b/ 2 N such that bjan. It
therefore follows that one consequence of Proposition 2.3 is the fact that if R is a ring
such that R� is divided, then R is also divided. The proof of Proposition 2.3 is similar
to the proof of Proposition 2.1 and is hence omitted.

Proposition 2.3. Let R be a divided ring. Then R� is divided if and only if there exists
n 2 N such that for all a; b 2 R, either ajb or bjan.

We next construct an example to show that a divided ring R need not satisfy the
divisibility condition in the statement of Proposition 2.3

Example 2.4. There exists a divided ring R such that R� is not divided. Our construc-
tion uses an infinite strictly ascending chain of fields Q � F1 � F2 � � � � � Fn � � � � ,
with F WD [Fn. Fix a prime integer p and let Note 4

replace cup
by bigcup
(also in
other
(similar)
places)?

R WD Z.p/ C F1X C F2X
2
C � � � C FnX

n
C � � � � F ŒŒX��:

To show that R is divided, it will be convenient to first show that the ring

T WD QC F1X C F2X
2
C � � � C FnX

n
C � � � � F ŒŒX��

is divided. For this, it suffices, by [3, Proposition 2], to show that if a D
P1
iDn aiX

i

and b D
P1
jDm bjX

j are nonzero nonunits of T , with 1 � n � m, then there exists
a positive integer � such that a�=b 2 T . Choose � so that �n > 2m. Then p WD
�n � m > m and we easily see by the usual process of long division that when a�

(D .an/
�Xn�C higher degree terms) is divided by b, the quotient in F ŒŒX�� actually

lies in T . In other words, b divides a� in T , and so T is a divided domain. Next,
consider the maximal ideal M WD F1X C F2X

2 C � � � C FnX
n C � � � of T . Observe

that T=M Š Q. Then, since R is the pullback T �T=M Z.p/ with both T and Z.p/
being divided domains, it follows from [11, Corollary 2.6] that R is a divided domain,
and hence a divided ring, as asserted.

Moreover, we claim thatR� is not divided. To prove this claim, pick dn 2 FnnFn�1
for each n 2 N. Set an WD X and bn WD dnX

n. Then for each n, an−bn and bn−ann.
Define ˛; ˇ 2 R� via ˛ WD .an/n2N and ˇ WD .bn/n2N . Then ˛−ˇ and ˇ−˛n for all
n 2 N. So, by [3, Proposition 2], R� is not divided, thus proving the above claim.

Let R be the divided ring in the above example. Although R� is not divided, note
thatR� is treed (in contrast to the situation in Example 2.5 below). To see this, observe
that for all a; b 2 R, either ajb2 or bja2, and apply Proposition 2.1.

Next, we present a family of examples of divided rings whose ultrapowers are not
treed.

Example 2.5. There exists a divided ring R such that R� is not treed. Indeed, consider
any analytically unramified one-dimensional local integral domain R. Trivially, R is
a divided ring. Moreover, as recalled in the Introduction, R� inherits the “quasilocal”
condition from R. Therefore, by also arranging that R is not analytically irreducible
(for instance, takingR as in the examples in [9, pp. 54–55]), we see from Corollary 2.2
and Proposition 2.1 that R� is not treed.
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Our next result shows that the property involving a uniform bound that was men-
tioned in the hypothesis of Proposition 2.3 ascends and descends in the context of a
certain pullback, namely, the “Spec.R/ D Spec.T /” context of [1]. First, for n 2 N, it
is convenient to say that a ring R has property �n if, for all elements a; b 2 R, either
ajb or bjan. It is clear that if a ring R satisfies �n for some n 2 N, then R satisfies �m
for all m � n.

Proposition 2.6. LetR � T be quasilocal rings with common maximal idealM . Then:

(a) If R satisfies �n, then T satisfies �n.

(b) If T satisfies �1, then R satisfies �2.

(c) If T satisfies �n for some n � 2, then R satisfies �n.

Proof. (a) The assertion is clear because R and T have the same set of nonunits.
(b) Suppose that T satisfies �1, and let a; b 2 R. We need to show that either ajb

in R or bja2 in R. Without loss of generality, neither a nor b is a unit; thus, a; b 2M .
Suppose that a−b in R. We show that bja2 in R. There are two cases.

In the first case, ajb in T . Then b D ax for some x 2 T n R. Since M � R, we
conclude that x is a unit of T . Then a D x�1b (in T ), and so a2 D .ax�1/b 2 Rb, as
ax�1 2M � R. In particular, bja2 in R.

In the remaining case, a−b in T . Then, by hypothesis, bja in T . Write by D a,
with y 2 T . It follows that a2 D b.ay/ and so, since ay 2 M � R, we have bja2 in
R, as desired.

(c) Suppose that T satisfies �n for some n � 2. As in the proof of (b), we must
show that if a; b 2 M , then either ajb in R or bjan in R. Suppose that a−b in R.
We show that bjan in R. If ajb in T , we can argue as in the proof of (b) to show that
bja2 in R, whence bjan in R. Thus, without loss of generality, a−b in T . Then, by
hypothesis, bjan in T . Write an D bx, with x 2 T . If x 2 R, we are done, and so we
may assume that x is a unit of T . Since n � 2, we have b D x�1an D .x�1an�1/a,
with .x�1an�1/ 2M � R. Thus, in the case to which we have reduced, it follows that
ajb (in T ), a contradiction. The proof is complete.

Proposition 2.7. Let T be an overring of an integral domainR. If Spec.R/ D Spec.T /
(as sets), then Spec.R�/ D Spec.T �/.

Proof. Without loss of generality R ¤ T . Then, by [1, Lemma 3.2], R and T are
quasilocal, with the same maximal ideal, say M . By a fact recalled in the Introduc-
tion, it follows that R� and T � are each quasilocal with unique maximal ideal M �.
Therefore, by [1, Proposition 3.8], Spec.R�/ D Spec.T �/.

Recall from [14] that a quasilocal domain .R;M/ is called a pseudo-valuation do-
main (PVD) if R has a (uniquely determined) valuation overring V such that V has
maximal ideal M ; equivalently, such that Spec.R/ D Spec.V / (as sets).

Corollary 2.8. If R is a PVD, then R� is a PVD.
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Proof. Since the ultrapower of a valuation domain is also a valuation domain, the result
follows by combining Proposition 2.7 and the second of the above characterizations
of PVDs.

The preceding result generalizes to arbitrary (commutative) rings. In the process
of proving this (see Proposition 2.9 below), we make contact with the following in-
teresting class of divided rings. Recall from [6] that a ring R is called a pseudo-
valuation ring (PVR) if Pa and Rb are comparable (with respect to inclusion) for
all P 2 Spec.R/ and a; b 2 R. An integral domain is a PVR if and only if it is a PVD.
Any PVR is a divided, hence quasilocal, ring. It was shown in [6] that a quasilocal ring
.R;M/ is a PVR if and only if, for all elements a; b 2 R, either ajb or bjam for each
m 2M .

Proposition 2.9. If R is a PVR, then R� is a PVR.

Proof. By the above remarks, R is quasilocal, say with maximal ideal M . There-
fore, R� is quasilocal, with maximal ideal M �. Consider arbitrary elements ˛ D
.an/n2N ; ˇ D .bn/n2N 2 R

� and � D .mn/n2N 2 M
�. Without loss of gener-

ality, the coordinates mn may be chosen so that mn 2 M for each n 2 N. Put
V WD ¹i 2 N j ai jbiº and W WD ¹i 2 N j bi jaimiº. Since R is a PVR, the last-
mentioned characterization of PVRs yields that V [ W D N. As U is an ultrafilter,
it follows that either V 2 U or W 2 U. In the first (resp., second) case, ˛jˇ (resp.,
ˇj˛�). Thus, either ˛jˇ or ˇj˛� for each � 2M �. In other words, R� is a PVR.

Recently, much attention has been paid to a certain class C of divided rings that
contains the class of PVRs. We next recall the definition of C and show that, unlike the
classes of Prüfer domains, valuation domains, PVDs and PVRs, C is not stable under
the passage from R to R�.

Recall that a prime idealP of a ringR is said to be divided (inR) ifP is comparable
(with respect to inclusion) to Rb for each b 2 R. A ring R is called a ˆ-pseudo-
valuation ring (ˆ-PVR) if Nil.R/ is a divided prime ideal of R and, for all a; b 2
R n Nil.R/, either ajb or bjan for all nonunits n of R. The following particularly
useful characterization of the ˆ-PVR concept appears in [5]. A ring R is a ˆ-PVR if
and only if Nil.R/ is a divided prime ideal of R and R=Nil.R/ is a PVD.

Example 2.10. There exists aˆ-PVR R such that R� is not aˆ-PVR. It can be further
arranged that Nil.R/ is a prime ideal of R but Nil.R�/ is not a prime ideal of R�. For
a construction of such, begin with any field K and set

R WD KŒX1; X2; : : : ; Xn; : : : �=.¹X
n
n ; XiXj j n; i; j 2 N; i ¤ j º/:

Notice that the images of the Xi ’s are nilpotent and generate the unique maximal ideal,
say M , of R. In particular, Nil.R/ D M 2 Spec.R/. It is then trivial via the above
criterion from [5] that R is a ˆ-PVR. To show that R� is not a ˆ-PVR, we produce
elements ˛ 2 Nil.R�/, ˇ 2 R� n Nil.R�/ such that ˇ−˛. Observe that the elements
˛ WD .X2; X3; X2; X3; : : :/ and ˇ WD .X1; X2; X3; : : : ; Xn; : : :/ have the asserted prop-
erties. Thus, Nil.R�/ is not a divided prime ideal of R�, and so R� is not a ˆ-PVR.
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It remains to verify that Nil.R�/ is not a prime ideal of R�. Consider the element
 WD .X2; X3; : : : ; Xn; : : : / 2 R

�. Evidently, ˇ D 0. We noted above that ˇ is not
nilpotent; and in the same way, one checks that  is not nilpotent. The verification is
complete.

In view of the unexpected behavior of Nil.R�/ in the preceding example, we devote
the final two results of this section to additional scrutiny of related behavior. We begin
by analyzing the behavior of “Rad” in the passage from R to R�.

Remark 2.11. Let J be an ideal of a ring R. Then Rad.J �/ � Rad.J /�, with equality
if and only if there exists n 2 N such that an 2 J for all a 2 Rad.J /. The proof is
similar to that of Proposition 2.1; see [19, Proposition 2.28].Note 5

replaced
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semicolon Example 2.12. There exists a PVR, R, such that Nil.R/ is a prime ideal of R and

Nil.R�/ is a prime ideal of R�, but Nil.R�/ ¤ Nil.R/�. (By taking J WD 0 in the
preceding remark, one trivially has that Nil.S�/ � Nil.S/� for any ring S .) For a
construction, consider any rank one non-discrete valuation domain .D;M/. Choose
any nonzero element d 2 M ; then Rad.Dd/ D M . Then, of course, [6, Corollary
3] ensures that R WD D=Dd is a PVR, and so Nil.R/ is a prime (in fact, the unique
maximal) ideal of R. Moreover, by Proposition 2.9, R� is a PVR, and so Nil.R�/ is a
prime ideal of R�.

It remains to verify that Nil.R�/ ¤ Nil.R/�. Deny. Then, by the criterion in
Remark 2.11, there exists n 2 N such that an D 0 for all a 2 Rad.0/ D Nil.R/.
Therefore, for all m 2 M , we have mn 2 Dd . Letting v denote any (real-valued)
valuation associated to D, we infer the existence of d1 2 D such that

nv.m/ D v.mn/ D v.d1d/ D v.d1/C v.d/ � v.d/;

whence v.m/ � v.d/
n

, an absurdity since the non-discreteness of D guarantees the
existence of elements m 2 M with arbitrarily small (positive) v-value. This (desired)
contradiction completes the verification.

3 Ultrapowers of LPVDs

For the remainder of the paper, R will denote an integral domain. Recall from [12]
that R is called a locally pseudo-valuation domain (LPVD) if RP is a PVD for all P 2
Spec.R/ (equivalently, for all P 2 Max.R/). We will show that with an extra assump-
tion onR, the property of being an LPVD is inherited byR�. First, we need to describe
the maximal ideals of R�. In [23], a description of some of the maximal ideals of the
product T WD

Q
I R is given (an equivalent formulation is given in [20]). Furthermore,

it is shown in [23] that with an additional hypothesis, these are all the maximal ideals
of T . We next present that description here and then pass to considerations involving
the factor ring R�.

Let I denote the set of all functions from the index set I to the set of finite subsets of
Max.R/. For �; � 2 I, we say � � � (� is called a subfunction of � ) if �.i/ � �.i/ for



16 D. F. Anderson, A. Badawi, D. E. Dobbs and J. Shapiro

all i 2 I . For � � � 2 I, we define � n� to be the function given by �.i/n�.i/ for each
i 2 I . Also, we define the functions � _ � (resp., � ^ �) via .� _ �/.i/ WD �.i/[ �.i/
(resp., .� ^ �/.i/ WD �.i/ \ �.i/) for each i 2 I . Finally, the blank function ˆ is
defined by ˆ.i/ WD ¿ for each i 2 I . Now, consider a fixed element � 2 I. The set
of subfunctions of � forms a Boolean algebra with � as 1, ˆ as 0, and the complement
of � � � is �0 D � n �. Therefore, it makes sense to talk about ultrafilters on the
set of subfunctions of � . In particular, by an ultrafilter on � , we mean a collection of
functions F � ¹� j � � �º such that:

� � 2 F and ˆ 62 F ;

� If � 2 F and � � � , then � 2 F ;

� If �; � 2 F , then � ^ � 2 F ;

� If � is an element of the Boolean algebra of subfunctions of � , then either � 2 F
or �0 2 F .

If F is an ultrafilter on � , then by a standard argument, one can show that if �_� 2 F ,
then either � 2 F or � 2 F .

For a D .ai /i2I 2 T , we can obtain an interesting subfunction of � by defining
�a.i/ WD ¹P 2 �.i/ j ai 2 P º. Now, consider any ultrafilter F on � . Set .F / WD
¹a 2 T j �a 2 F º. As shown in [17] or [23], .F / is a maximal ideal of T . Moreover,
if each nonzero element of R is contained in only finitely many maximal ideals of R
(such rings R are said to have finite character), then these .F /’s are all the maximal
ideals of T [23, Theorem 1.2].

It is well known that for a (commutative) ring S , each P 2 Spec.S/ induces an
ultrafilter UP on the Boolean algebra of idempotents of S via: e 2 UP if and only if
1 � e 2 P . Furthermore, it is easy to see that if P � Q are elements of Spec.S/, then
UP � UQ; hence, since UP and UQ are maximal filters, we have UP D UQ. Now
if (as above) T WD

Q
I R, where R is an integral domain, then the Boolean algebra

of idempotents of T is isomorphic to the Boolean algebra of subsets of I . Thus, each
prime ideal P of T determines an ultrafilter UP on (the Boolean algebra of subsets of)
I . In particular, UP WD ¹A � I j 1 � eA 2 P º, where eA denotes the characteristic
function on A.

Conversely, given an ultrafilter U on (the Boolean algebra of subsets of) I , one can
construct an ideal PU � T by setting PU WD .¹1 � eA j A 2 Uº/. Observe that if
.ai / 2 T , then .ai /.1 � eA/ D .ai /, where A WD Z.ai /. Thus PU is the ideal of
relations that defines the ultrapower R� and so T=PU D R�. Therefore, if R is an
integral domain, PU is a prime ideal of T . Furthermore, one sees that UPU

D U and
PUP

� P . Hence the assignment U 7! PU defines a bijection between the set of
ultrafilters on I and Min.T /.

In addition, we claim that eachQ 2 Spec.T / contains a unique minimal prime ideal
P . Suppose the claim is false, and takeQ 2 Spec.T / such thatQ contains two distinct
minimal prime ideals P1 and P2. Since each minimal prime ideal of T is generated by
idempotents, there exists an idempotent e 2 P1 n P2. Therefore 1 � e 2 P2, whence
1 D e C .1 � e/ 2 Q, a contradiction, thus proving the claim.
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Furthermore, suppose Q 2 Spec.T /, and let P denote the unique minimal prime
ideal of T that is contained in Q. Then, since the only idempotents in a local ring
are 0 and 1, it follows that PTQ D 0. Hence, there are canonical isomorphisms
TQ Š TQ=PTQ Š .T=P /Q=P .

Now, we return to ultrapowers of an integral domain R with respect to an ultrafilter
U on I . As noted above, R� D T=PU. Therefore, to examine the localization of
R� at an arbitrary maximal ideal, it suffices, by the preceding remarks, to consider the
localization of T at a suitable maximal ideal. First, we need the following technical
lemma.

Lemma 3.1. Let F be an ultrafilter on � 2 I and let � 2 F . Let M WD .F / be the
maximal ideal determined by F and put U WD UM . Then there exists W 2 U such
that �.i/ ¤ ¿ for all i 2 W .

Proof. Partition the set I into V WD ¹i 2 I j �.i/ D ¿º and W WD I n V . Observe
that �eV

� � 2 F , whence �eV
2 F . Thus, eV 2 M D .F /. Since U D UM , it

follows that W 2 U, and the result is proved.

Before moving on to our result for LPVDs, we give some general definitions. Let
R be a ring with a; b 2 R and let S be a multiplicative subset of R. We say that a
divides b with respect to S if the image of a divides the image of b in the ringRS . This
is equivalent to saying that there exists r 2 R and s 2 S such that ar D bs. Note that
if X is any finite subset of Max.R/, then a divides b with respect to all R n P for all
P 2 X if and only if a divides b with respect to R n [P2XP .

Theorem 3.2. Let R be an LPVD and let .F / be the maximal ideal of T determined
by an ultrafilter F on some � . Then T.F / is a PVD.

Proof. Let M D .F /. To show that TM is a PVD, we must show that given any two
elements ˛; ˇ 2 M , either ˛ divides ˇ with respect to T nM or ˇ divides ˛m with
respect to T nM for all m 2M (cf. [6]).

Let ˛ D .ai /i2I and ˇ D .bi /i2I be elements of M . Thus the element �˛ ^ �ˇ is
in F . Define � � �˛ ^ �ˇ by �.i/ WD ¹P 2 .�˛ ^ �ˇ /.i/ j ai divides bi with respect
to R n P º. Set � WD .�˛ ^ �ˇ / n � .

Since F is an ultrafilter, either � 2 F or � 2 F . First, assume the former. In
this case, we claim that ˛ divides ˇ with respect to T nM . To see this, note that by
Lemma 3.1, there exists W 2 U such that for all i 2 W , �.i/ ¤ ¿. Furthermore,
from the definition of � , it follows that for each i 2 W , there exists ri 2 R and
si 2 R n [P2�.i/P such that airi D bisi . For all i 2 I n W , let ri WD si WD 1. Use
this data to define two elements of R�, namely, r WD .ri / and s WD .si /. It follows that
˛r D ˇs. However, it is also clear from the definition that s 62 M , thus proving the
claim.

In the remaining case, we can assume that � 2 F . Let m WD .mi /i2I 2 M . It
suffices to show that ˇ divides ˛m with respect to T nM . Since �m 2 F , we have
�m ^ � 2 F . Therefore, it again follows from Lemma 3.1 that there exists W 2 U
such that for all i 2 W; .�m ^ �/.i/ ¤ ¿. Also from the definition of �, ai does not
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divide bi with respect to R n P for any P 2 .�m ^ �/.i/. Therefore, since R is an
LPVD, we have that for each i 2 W , there exist si 2 R n [P2.�m^�/.i/P and ri 2 R
such that miaisi D biri . For all other i , set ri WD si WD 1. Thus, s WD .si / 2 T nM ,
r WD .ri / 2 T , and m˛s D ˇr . The last equation is the statement that ˇ divides ˛m
with respect to T nM , as desired.

Corollary 3.3. Let R be an LPVD with finite character. Then any ultrapower R� is
also an LPVD.

Proof. Since R has finite character, it follows from [23, Theorem 1.2] that each maxi-
mal ideal of R� is the image of a maximal ideal of T of the form .F /. Thus, the result
follows directly from Theorem 3.2.

We close with two observations. First, the “locally divided” analogue of the pre-
ceding result is false. Indeed, Examples 2.4 and 2.5 each show that if R is a quasilocal
locally divided integral domain (necessarily of finite character), in other words a di-
vided domain, then R� need not be locally divided. Second, we do not know whether
Corollary 3.3 remains valid if one deletes the “finite character” hypothesis.
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